# Vapor-Liquid Equilibria of Ethanol + Octane at 343.15 K and 1-Propanol + Octane at 358.15 K 

Toshihiko Hiaki, ${ }^{*, \dagger}$ Kenji Takahashi, ${ }^{\dagger}$ Tomoya Tsuji, ${ }^{\dagger}$ Masaru Hongo, ${ }^{\dagger}$ and Kazuo Kojima ${ }^{\ddagger}$

Department of Industrial Chemistry, College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275, Japan, and Department of Industrial Chemistry, College of Science and Technology, Nihon University, 1-8 Surugadai, Kanda, Chiyoda-ku, Tokyo 101, Japan


#### Abstract

Isothermal vapor-liquid equilibria were measured for ethanol + octane at 343.15 K and 1-propanol + octane at 358.15 K . The measurements were made in a still with the aid of a computer for control of the temperature and measurement of the total pressure. The results were best correlated with the Wilson equation for the system of ethanol + octane and with the nonrandom two-liquid (NRTL) equations for the 1-propanol + octane system.


## Introduction

In the present study, vapor-liquid equilibria (VLE) were measured for ethanol + octane at 343.15 K and 1-propanol + octane at 358.15 K , using an apparatus which was described in our previous work (1), with computer control of the temperature and the measurement of total pressure. For the ethanol + octane system, four sets of isothemal VLE data, at $318.15,328.15,338.15$, and 348.15 K , are available in the literature (2). The isothermal VLE for the 1-propanol + octane system have been reported at 363.15 K in the literature (3).

## Experimental Section

Materials. Octane, ethanol, and 1-propanol used in this work were special grade reagents, supplied by the Wako Pure Chemical Co. Ltd. Ethanol and 1-propanol were used after their minute water content was removed with molecular sieves having a pore diameter of 0.3 nm . A gaschromatographic analysis on all three materials indicated that each had a purity of at least $99.9 \mathrm{~mol} \%$. Table 1 compares some of the measured properties with literature data.
Procedure. The isothermal VLE apparatus and associated computer, which was described in our previous work (1), was used for the measurements. The equilibrium still (4) with a provision for both vapor and liquid recirculation was used for the determination of VLE. The still with a total capacity of about $100 \mathrm{~cm}^{3}$ was used.
The ebulliometer was used for the determination of the total pressure. The platinum resistance thermometers placed in both the equilibrium still and the ebulliometer were linked with the GP-IB bus and enabled temperature measurement and its control and proper adjustment of the system pressure.

The sample was introduced into the VLE still and water into the ebulliometer. After establishing a steady state in both the sample and water at atmospheric pressure, the sample temperature was maintained at the desired temperature by adjusting the pressure using the computer in conjunction with the four solenoid valves and the vacuum pump.
The temperature was measured with a calibrated platinum resistance thermometer with an accuracy of 0.03 K .

[^0]Table 1. Normal Boiling Points, $\boldsymbol{T}_{\mathrm{b}}$, and Densities, $\varrho$, of the Components

|  | $T_{b} / \mathrm{K}$ |  |  | $\rho(298.15 \mathrm{~K}) /\left(\mathrm{gcm}^{-3}\right)$ |  |
| :--- | :---: | :---: | :--- | :---: | :---: |
| material | exptl | lit. (19) |  | exptl | lit. (19) |
| ethanol | 351.44 | 351.443 |  | 0.78493 | 0.78493 |
| 1-propanol | 370.26 | 370.301 |  | 0.79965 | 0.79960 |
| octane | 398.80 | 398.823 |  | 0.69868 | 0.69862 |

Table 2. Antoine Constants of the Components ${ }^{a}$ (20)

| material | $A$ | $B$ | $C$ |
| :--- | :---: | :---: | :---: |
| ethanol | 7.24222 | 1595.811 | -46.702 |
| 1-propanol | 6.87065 | 1438.587 | -74.598 |
| octane | 6.04394 | 1351.938 | -64.030 |
| $\log (P / \mathrm{kPa})=A$ | $-B /(T / \mathrm{K})+C]$. |  |  |

Table 3. Isothermal Vapor-Liquid Equilibrium Data, Vapor Pressure, $P$, Liquid Phase, $x_{1}$, and Vapor Phase, $y_{1}$, Mole Fractions, and Activity Coefficient, $\gamma_{i}$, for Ethanol (1) + Octane (2) at 343.15 K

| $P / \mathrm{kPa}$ | $\boldsymbol{x}_{1}$ | $y_{1}$ | $\gamma_{1}$ | $\gamma_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 15.951 | 0.0000 | 0.0000 |  |  |
| 60.295 | 0.0830 | 0.7381 | 7.4719 | 1.0640 |
| 64.986 | 0.1114 | 0.7594 | 6.1610 | 1.0857 |
| 66.999 | 0.1311 | 0.7677 | 5.4517 | 1.1047 |
| 69.835 | 0.1807 | 0.7813 | 4.1905 | 1.1490 |
| 72.133 | 0.2243 | 0.7891 | 3.5185 | 1.2081 |
| 72.971 | 0.2601 | 0.7904 | 3.0736 | 1.2729 |
| 74.505 | 0.3225 | 0.7980 | 2.5535 | 1.3676 |
| 74.962 | 0.3514 | 0.7988 | 2.3599 | 1.4314 |
| 75.453 | 0.3859 | 0.8026 | 2.1727 | 1.4931 |
| 76.241 | 0.4521 | 0.8053 | 1.8796 | 1.6675 |
| 76.791 | 0.5206 | 0.8079 | 1.6490 | 1.8938 |
| 76.892 | 0.5793 | 0.8131 | 1.4932 | 2.1032 |
| 77.243 | 0.6380 | 0.8180 | 1.3699 | 2.3917 |
| 77.408 | 0.6699 | 0.8220 | 1.3137 | 2.5714 |
| 77.718 | 0.7310 | 0.8256 | 1.2138 | 3.1046 |
| 78.116 | 0.7818 | 0.8318 | 1.1490 | 3.7116 |
| 78.244 | 0.8124 | 0.8386 | 1.1164 | 4.1516 |
| 78.300 | 0.8392 | 0.8441 | 1.0885 | 4.6841 |
| 78.268 | 0.8653 | 0.8531 | 1.0663 | 5.2713 |
| 77.715 | 0.9072 | 0.8723 | 1.0325 | 6.6182 |
| 77.030 | 0.9380 | 0.8970 | 1.0178 | 7.9408 |
| 72.226 | 1.0000 | 1.0000 |  |  |

The vapor pressure, $P$, of the sample was determined by the measurement of the boiling point of water on the basis of the published data of the vapor pressure of water (5). The accuracy of vapor pressure measurements is estimated to be 0.03 kPa .

Table 4. Isothermal Vapor-Liquid Equilibrium Data,
Vapor Pressure, $P$, Liquid Phase, $x_{1}$, and Vapor Phase, $y_{1}$, Mole Fractions, and Activity Coefficient, $\gamma_{i}$, for
1-Propanol (1) + Octane (2) at 358.15 K

| $P / \mathrm{kPa}$ | $x_{1}$ | $y_{1}$ | $\gamma_{1}$ | $\gamma_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 27.991 | 0.0000 | 0.0000 |  |  |
| 52.230 | 0.0649 | 0.4849 | 6.2946 | 1.0126 |
| 57.314 | 0.0933 | 0.5358 | 5.2954 | 1.0305 |
| 61.074 | 0.1315 | 0.5722 | 4.2673 | 1.0550 |
| 64.344 | 0.1737 | 0.5981 | 3.5520 | 1.0961 |
| 65.403 | 0.1901 | 0.6040 | 3.3299 | 1.1195 |
| 66.239 | 0.2112 | 0.6116 | 3.0724 | 1.1415 |
| 69.001 | 0.2859 | 0.669 | 2.4586 | 1.2270 |
| 70.357 | 0.3469 | 0.6534 | 2.1179 | 1.3056 |
| 71.500 | 0.4160 | 0.6624 | 1.8185 | 1.4448 |
| 72.226 | 0.4545 | 0.6693 | 1.6982 | 1.5303 |
| 72.515 | 0.4860 | 0.6756 | 1.6091 | 1.5997 |
| 72.773 | 0.5318 | 0.6881 | 1.5025 | 1.6953 |
| 73.358 | 0.5842 | 0.6945 | 1.3911 | 1.8847 |
| 73.812 | 0.6533 | 0.7078 | 1.2751 | 2.1761 |
| 73.957 | 0.6848 | 0.7151 | 1.2312 | 2.3390 |
| 73.935 | 0.7410 | 0.7514 | 1.1630 | 2.6851 |
| 73.690 | 0.7821 | 0.7481 | 1.1231 | 2.9862 |
| 73.424 | 0.8171 | 0.7626 | 1.0917 | 3.3438 |
| 73.007 | 0.8371 | 0.7725 | 1.0733 | 3.5800 |
| 73.787 | 0.8524 | 0.8823 | 1.0641 | 3.7719 |
| 72.324 | 0.8895 | 0.8098 | 1.0487 | 4.3814 |
| 70.893 | 0.9266 | 0.8500 | 1.0358 | 5.1140 |
| 68.357 | 0.9622 | 0.9004 | 1.0193 | 6.3836 |
| 62.849 | 1.0000 | 1.0000 |  |  |
|  |  |  |  |  |



Figure 1. Pressure-composition diagram for ethanol (1) + octane (2) at 343.15 K : ( 0 ) $x_{1}$ and ( $) y_{1}$, this work; ( - ) Wilson equation; ( $\Delta$ ) $x_{1}$ and ( $\mathbf{\Delta}$ ) $y_{1}$ at 318.15 K , (ロ) $x_{1}$ and ( $\mathbf{\square}$ ) $y_{1}$ at 328.15 , ( $(\square) x_{1}$ and $(\checkmark) y_{1}$ at 338.15 , ( $\left.\nabla\right) x_{1}$ and $(\nabla) y_{1}$ at 348.15 K , Boublikova et al. (2).

Analysis. The equilibrium composition of the samples was determined using a Shimadzu gas chromatograph, type GC-14A, equipped with a flame ionization detector. PEG-20M ( $10 \%$ polyethylene glycol on chromosorb W-AW $60 / 80$ ) was used as the column packing. The relationship between peak area and composition was determined from analysis of samples of known composition. The accuracy of liquid, $x_{i}$, and vapor, $y_{i}$, composition measurements is estimated to be $\pm 0.002$ in mole fraction.

## Results and Discussion

The activity coefficients $\gamma_{i}$ were calculated using the following rigorous equation:

$$
\begin{equation*}
\phi_{i} P y_{i}=\gamma_{i} P_{i}^{\circ} x_{i} \phi_{x_{i}}^{\circ} \exp \left[V_{i}\left(P-P_{i}^{\circ}\right) / R T\right] \tag{1}
\end{equation*}
$$

where $\phi_{i}$ and $\phi_{i}{ }^{\circ}$, the fugacity coefficients of component $i$ in the mixture and pure vapor, respectively, were evaluated by using the second virial coefficients obtained by the


Figure 2. Activity coefficient-liquid composition diagram for ethanol (1) + octane (2) at $343.15 \mathrm{~K}:(\mathrm{O}) \ln \gamma_{1}$ and ( $) \ln \gamma_{2}$, this work; ( - ) Wilson equation; $(\Delta) \ln \gamma_{1}$ and ( $\mathbf{\Delta}$ ) in $\gamma_{2}$ at 318.15 K , ( $\square$ ) $\ln \gamma_{1}$ and $(\mathbb{\square}) \ln \gamma_{2}$ at 328.15 K , ( $\circ$ ) $\ln \gamma_{1}$ and $(\boldsymbol{*}) \ln \gamma_{2}$ at 338.15 K , ( $\nabla$ ) $\ln \gamma_{1}$ and ( $\mathbf{\nabla}$ ) $\ln \gamma_{2}$ at 348.15 K , Boublikova et al. (2).


Figure 3. Pressure-composition diagram for 1-propanol (1) + octane (2) at 358.15 K : ( O ) $x_{1}$ and ( $\bullet$ ) $y_{1}$, this work, ( - ) NRTL equation; $(\Delta) x_{1}$ and ( $\left.\mathbf{\Delta}\right) y_{1}$ at 363.15 K , Berro (3).


Figure 4. Activity coefficient-liquid composition diagram for 1-propanol (1) + octane (2) at $358.15 \mathrm{~K}:(\mathrm{O}) \ln \gamma_{1}$ and ( $) \ln \gamma_{2}$, this work; $(-)$ NRTL equation; $(\Delta) \ln \gamma_{1}$ and $(\mathbf{\Delta}) \ln \gamma_{2}$ at 363.15 K , Berro (3).

Hayden-O'Connell method (6). The vapor pressures of the pure components, $P_{i}{ }^{\circ}$, were obtained using the Antoine equation constants (Table 2). The liquid molar volumes
$V_{i}$ were calculated from the Rackett equation as modified by Spencer and Danner (7).

The VLE data for ethanol (1) + octane (2) at 343.15 K and 1-propanol (1) + octane (2) at 358.15 K are reported in Tables 3 and 4 along with the activity coefficients calculated using eq 1 . Both binary systems form a maximum pressure azeotrope. The azeotropic points were determined on the basis of the experimental VLE data, and are $x_{1}(\mathrm{AZ})=0.846$ and $P(\mathrm{AZ})=78.31 \mathrm{kPa}$ for ethanol (1) + octane (2), and $x_{1}(\mathrm{AZ})=0.726$ and $P(\mathrm{AZ})=74.01 \mathrm{kPa}$ for 1 -propanol (1) + octane (2).

The experimental data were tested for thermodynamic consistency by using the point test of Fredenslund et al. (8) and of Van Ness et al. (9) and the area test of Herington (10) and of Redlich and Kister (11) as described by Gmehling and Onken (12). The data were also checked by the Kojima (13) method, which permits the overall check of the data by combining three tests, namely, the point test, the area test, and the infinite dilution test. The results of three consistency tests indicate that the experimental data for both systems are thermodynamically consistent.

The activity coefficients were correlated with the Wilson (14), modified Wilson (15), nonrandom two-liquid (NRTL) (16), and UNIQUAC (17) equations. The parameters in each of these equations are obtained by using the Marquardt method (18). The sum of the squares of relative deviations in temperature and vapor composition was minimized during optimization of the parameters.

For ethanol (1) + octane (2), the Wilson equation yielded the lowest mean deviations between the experimental and calculated pressures, 0.17 kPa , and vapor compositions, 0.003 mole fraction. The Wilson parameters for this system are found to be

$$
\begin{aligned}
& \lambda_{12}-\lambda_{11}=8.7063 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \qquad \lambda_{12}-\lambda_{22}=2.0898 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

The data for the system 1-propanol (1) + octane (2) were also best correlated using the NRTL equation with parameters

$$
g_{12}-g_{11}=4.4197 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
$$

$$
\begin{aligned}
& \quad g_{12}-g_{22}=4.9505 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \alpha=0.547
\end{aligned}
$$

and an absolute average deviation of 0.003 in mole fraction and of 0.18 kPa in pressure. The calculated results using each of the activity coefficient equations are shown by solid lines in Figures 1-4.

## Literature Cited

(1) Hiaki, T.; Takahashi, K.; Tsuji, T.; Hongo, M.; Kojima, K. J. Chem. Eng. Data, in press.
(2) Boublikova, L.; Lu, B. C.-Y. J. Appl. Chem. 1969, $19,89$.
(3) Berro, C. Int. Data Ser., Sel. Data Mixtures, Ser. A 1987, 1, 73.
(4) Hiaki, T.; Yamato, K.; Kojima, K. J. Chem. Eng. Data 1992, 37, 203.
(5) Bridgeman, O. C.; Aldrich, E. W. J. Heat Transfer 1964, 86, 279.
(6) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209.
(7) Spencer, C. F.; Danner R. P. J. Chem. Eng. Data 1972, 17, 236.
(8) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977.
(9) Van Ness, H. C.; Byer, S. M.; Gibbs, R. E. AIChE J. 1973, 19, 238.
(10) Herington, E. F. G. J. Inst. Pet. 1951, 37, 457.
(11) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
(12) Gmehling, J.; Onken, U. Vapor-Liquid Equilibrium Data Collection; Chemistry Data Series; DECHEMA: Frankfurt, 1977.
(13) Kojima, K.; Moon, H. M.; Ochi, K. Fluid Phase Equilib. 1990, 56, 269.
(14) Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.
(15) Tsuboka, T.; Katayama, T. J. Chem. Eng. Jpn. 1975, 8, 181.
(16) Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135.
(17) Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
(18) Marquardt, D. W. J. Soc. Ind. Appl. Math. 1963, 11, 431.
(19) Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; John Wiley \& Sons: New York, 1986.
(20) Boublik, T.; Fied, V.; Hala, E. The vapour pressures of pure substances, 2nd ed.; Elsevier: Amsterdam, 1984.

Received for review July 7, 1994. Accepted August 30, 1994. ${ }^{\circledR}$
JE940131D

[^1]
[^0]:    ${ }^{+}$College of Industrial Technology.
    ₹ College of Science and Technology

[^1]:    ${ }^{\text {® }}$ Abstract published in Advance ACS Abstracts, November 15, 1994.

